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Within the framework of the Helfrich elastic theory of membranes and of differential geometry, we study the
relative stability of spherical vesicles and double bubbles. We find that not only temperature but also magnetic
fields can induce topological transformations between spherical vesicles and double bubbles and provide a
phase diagram for the equilibrium shapes.

DOI: 10.1103/PhysRevE.80.010403 PACS number�s�: 82.70.Uv, 83.60.Np, 02.40.�k

Self-assembled vesicles were experimentally observed to
form a variety of shapes �1�. However most equilibrium
vesicles are spherical. This is not surprising because spheres
are known to minimize not only the surface energy but also
the elastic energy of vesicles �2�. In mathematics it has been
proven that spheres have the least area to enclose and sepa-
rate a given volume. The analogous problem of identifying
the surface with least area enclosing and separating more
than one volume was first considered by the Belgian physi-
cist Plateau �3� in the 19th century. Surprisingly, only re-
cently it has been proven that a double bubble, a figure com-
posed of two spherical caps separated by a flat disk �Fig.
1�a��, is the solution to the two equal volume isoperimetric
problem in the Euclidean space �4�. A general proof for
double bubble enclosing two different volumes separated by
a nonflat membrane was given later �5�.

The connected spherical bubbles often observed in soap
are certainly a realization of this “minimum property” of
double bubbles since surface tension is the dominant driving
force. In this Rapid Communication we explore theoretically
whether double bubbles can represent the equilibrium shape
of vesicles when not only the surface tension but also other
energy terms such as elastic and magnetic energies are rel-
evant. To the best of our knowledge, a double bubble was
never considered as a candidate to describe the shape of
vesicles. The presence of the membrane S2 �see Fig. 1�a��
distinguishes double bubbles from dumbbells or pear-shaped
vesicles that were extensively studied in phase-separated sys-
tems �6�. Two adhering vesicles may look similar to a double
bubble, but they have different topology because the mem-
brane S2 is composed of two interacting membranes �7�.
Hence, when vesicles adhere there is no change in topology
and the Euler characteristic �8� remains unchanged as for two
single vesicles ��=4�, whereas a double bubble has �=3 �9�
that is neither the topology of two single vesicles nor the one
of a larger sphere ��=2�. One may therefore refer to a double
bubble as an intermediate shape in the topological transfor-
mations between one and two spheres. Such transformations
might also be relevant to describe the first stage of cell divi-
sion.

To study the instabilities of spherical vesicles toward
double bubbles we start from the well-known model of elas-
tic free energy proposed by Helfrich �10�. This model was
successful in explaining the shapes of red blood cells and in
predicting some new nontrivial shapes of vesicles �1,2�.
However, one cannot apply without restrictions a continuum
elastic theory to the shapes with discontinuities since it

would yield infinite energy. The discontinuities can be taken
into account by introducing a line tension with an effective
angular dependence as was proposed in �11�. Similar argu-
ments can be applied to a double bubble, which has a circu-
lar rim with a singularity, where three smooth surfaces meet
�see Fig. 1�a��. Therefore, to take into account the rim sin-
gularity in the shape of a double bubble, we propose a phe-
nomenological term derived from the Gauss-Bonnet theorem
and added to the Helfrich elastic free energy. Although other
forms of the rim energy might be plausible, here we investi-
gate the consequences of our ansatz. Assuming that intrinsic
parameters of the system entering the phenomenological
Helfrich free energy, such as elastic moduli and spontaneous
curvature, are temperature and pressure dependent �12�, we
propose a phase diagram for the studied shapes. It is intu-
itively clear that shapes similar to a double bubble may occur
whenever flat membranes become favorable, for instance, in
presence of high magnetic fields that tend to orient diamag-
netic molecules. For this case, experimental evidence of de-
formation of self-assembled spherical vesicles to oblate
spheroid was reported in �13,14�. Here, we find that a mag-
netic field can also influence the relative stability of shapes
and can make two spheroidal vesicles less stable than a de-
formed double bubble or one larger spheroid. The latter
transformation was experimentally observed for liposomes
�15� in high magnetic fields.

In Fig. 1�a� we show the double bubble as defined math-
ematically. The double bubble is composed of two spherical

FIG. 1. �Color online� �a� The double bubble is the unique sur-
face of least area that encloses two equal volumes; it is composed of
two identical spherical caps S1 and S3 separated by a single mem-
brane S2 that is flat for equal volumes; the three pieces meet along
a circle at 120° angle �4�. �b� Cross section of a magnetically de-
formed double bubble with semiaxes a�c; 2� is the angle between
two tangent planes at the meeting circle.
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caps S1 and S3 separated by a disk S2, meeting along a com-
mon circle �rim� at an angle of 120° �4�. To consider mag-
netic deformations, we study the modified geometry shown
in Fig. 1�b�. First, we assume that, during the deformation,
the spherical caps S1 and S3 �with S1=S3� change to oblate
spheroids with semiaxes c and a parallel and perpendicular
to the magnetic field B, respectively. Second, we allow the
angle between the three surfaces to differ from 120° by in-
troducing the parameter � �see Fig. 1�b�� related to the radius
of the membrane as

Rm =
a2 sin �

�a2 sin2 � + c2 cos2 �
. �1�

In this Rapid Communication we extend the concept of
double bubble from the unique area minimizing surface with
c=a and �=� /3 to the set of shapes with c� �0,a� ,�
� �0,� /2�.

The equilibrium shapes of fluid membranes are usually
studied in terms of the Helfrich model of bending energy
�10,16�:

Fel =� dS�2k�H − H0�2 + k̄K� , �2�

where H and K are the mean and Gaussian curvatures, re-
spectively, and H0 is the spontaneous mean curvature. The
first term, proportional to the bending rigidity k, describes
the local deviation from equilibrium curvature H0, while the

second term with Gaussian rigidity k̄ influences only the to-

pology and thus is often neglected. For the same reason, k̄ is
also not measurable if no topological transformations occur.
Here we cannot omit this term because we examine different
topologies. It was shown theoretically and confirmed experi-

mentally that −1� k̄ /k�0 for monolayer vesicles, while for

bilayer vesicles k̄ can be positive �12,17�. The values of H0,

k, and k̄ depend on pressure and temperature and therefore
may be considered as parameters and not as intrinsic prop-
erties of the system. We will consider the case with 0.7

�H0R0�1.3, −1� k̄ /k�1, where R0 is the radius of the
spherical vesicle and k=4�10−20 J	10kBT, the latter being
a typical value for molecular vesicles. Moreover, we assume
that self-assembled molecules keep a constant density, im-
plying the condition of constant surface of the vesicles S
=8�R0

2.
The form of the phenomenological free energy, given by

Eq. �2�, is valid only for smooth surfaces such as spheroids
or the individual surfaces S1, S2, and S3. In order to introduce
the energy of the rim phenomenologically, we make use of
the Gauss-Bonnet theorem 
dSK=2�� �8�, where �=3 for
the double bubble �9�. By integrating explicitly the Gaussian
curvature K over the three smooth pieces of the double
bubble, namely, the spheroidal caps �S1 ,S3� and the flat
membrane S2 �K=0�, we find the following expression:

�
i=1

3 �
Si

dSK = 4��1 + cos �� , �3�

which depends only on the angle � �see Fig. 1�b��. Since

dSK=6�, the difference with respect to Eq. �3� represents
the contribution of the curvature integral over the rim. This
integral accounts for the discontinuity of the shape and yields
the angle deficit of the rim as 2��−�i=1

3 
Si
dSK=2��1

−2 cos ��. We then assume that the phenomenological free
energy of a circular rim is proportional to the square of the
angle deficit �1−2 cos �� multiplied by the rim length 2�Rm

Frim = 	�1 – 2 cos ��22�Rm, �4�

where the coefficient of proportionality 	 represents the line
tension. The value of 	 can be estimated by considering the
formation of vesicles due to edge effects and comparing the
free energy of the two limiting cases, namely, a disk with
Fdisc=2�	Rd=4�	R0 and a sphere with Fsphere=4�2k,
yielding 	=2k /R0 �18�. Our conjecture for the form of the
rim free energy Frim is similar to the line tension with an
effective angular dependence proposed in �11� to justify the
occurrence of slope discontinuities between different mem-
brane domains. Also for crystals, it has been demonstrated
mathematically in �19� that the cusps that are often present at
crystal surfaces can be intrinsic property of equilibrium
shapes and not necessarily due to defects.

We begin by considering the symmetric case, namely, a
double bubble composed of two spherical caps with c=a
=R=R0

�8 / �4�1+cos ��+sin2 ��, which yields R ��=0=R0.
The result for the elastic energy and the rim energy is Fel

=4�k�1+cos ����1−RH0�2+ k̄ / �2k��+2�k sin2 ��RH0�2 and
Frim=4�k sin ��1–2 cos ��2R /R0. The � dependence of
these terms is shown in Fig. 2�a�. The rim energy vanishes
at �=0 when two vesicles just touch and at �=� /3 when
the angle between three surfaces is 2�=2� /3 �see Fig. 1�
that coincides with the Plateau’s rule for soap films.
However, contrary to soap bubbles, the elastic energy grows
with � so that the total free energy Ftot=Fel+Frim does
not necessarily have a minimum in the vicinity of �=� /3,
depending on the relative contribution from Fel. These
results show that with this approach we can obtain the
correct limiting cases. Figure 2�b� presents the phase dia-
gram for the relative stability of spherical vesicles and

double bubbles in the plane of the parameters �k̄ /k�
− �H0R0�. Thermal fluctuations can be taken into account via
the renormalization of the bending and Gaussian rigidity

given by �20� keff=k− �3kBT /8��log�qmax
2 /qmin

2 � and k̄eff= k̄
+ �5kBT /12��log�qmax

2 /qmin
2 �. Therefore, an increase in tem-

perature might be enough to induce shape transformation. In
Fig. 3 we show a scanning electron microscopy �SEM� im-
age of a structure formed by self-assembled bolaamphiphilic
sexithiophene �6T� molecules that usually form hollow
spherical vesicles �13�. The angle between two spherical
parts in this image suggests the possibility that this structure
is a double bubble and not two adhering vesicles. It would be
interesting to apply other experimental techniques, such as
transmission electron microscopy �TEM�, to investigate this
issue.

MANYUHINA et al. PHYSICAL REVIEW E 80, 010403�R� �2009�

RAPID COMMUNICATIONS

010403-2



Now consider the effect of magnetic field, which tends to
align diamagnetic molecules and usually leads to deforma-
tion of spherical vesicles toward superspheroid such as the
one measured and explained in �13,14�. Here, we consider
the possibility that magnetic fields could affect the topology
as well. We minimize the total free energy

Ftot = Fel + Frim + Fmag, �5�

with respect to the deformation c /a for a given value of �.
The elastic energy Fel and the rim energy Frim are given by

Eqs. �2� and �4�, respectively, and the magnetic energy, as-
suming that the membrane S2 is perpendicular to the direc-
tion of the magnetic field, is

Fmag = −

�DB2

2�0
� dSnz

2 + �Rm
2 � , �6�

where 
�=�� −�� is the difference of magnetic susceptibil-
ity along the long and short axes of the molecule and D is the
length of the molecule and the last term is the contribution of
the flat disk with radius Rm �Eq. �1��. Whenever the reduc-
tion in magnetic energy Fmag due to the presence of the
membrane compensates the elastic energy Fel and the energy
of the rim Frim, the formation of a double bubble is favored.

We show first the free energy, minimized over the de-
formation c /a, for all possible values of � in a magnetic
field chosen as B=20 T �see Fig. 4�a��. We distinguish
three deep minima separated by high barriers, corresponding
to the three equilibrium shapes. By varying the value of
Gaussian rigidity we find as the ground state: two spheroids

for k̄=−0.5k, a deformed double bubble with ��0.37� for

k̄=0, and a single spheroid for k̄=0.5k with comparable val-
ues of deformation c /a. Nevertheless, the presence of three
separated minima means that the experimentally observed

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5

F
/(

2π
k)

ω/π

Frim
Fel

Ftot

FIG. 2. �Color online� �a� The free-energy terms Frim, Fel, and
Ftot of double bubble with c=a plotted versus the angle �. We

choose k̄=0 and H0R0=1 for the elastic part for illustration. �b�
Phase diagram showing regions where two spheres with radius R0,
a standard double bubble with c=a and �=� /3, and one single
vesicle with radius �2R0 have the lowest free energy. The param-

eters H0, k, and k̄ depend on temperature and pressure �12�.

FIG. 3. SEM image of 6T vesicles on a metallic surface found
after evaporation of a solvent.

FIG. 4. �Color online� �a� Variation in the minimum of the total
free energy 
F=min�=const Ftot�c /a�−min�=0 Ftot�c /a� for mag-
netic field B=20 T. The thick dots on each curve indicate the local
minima separated by barriers. For some cases we show the corre-
sponding equilibrium shapes. For this plot the parameters are
H0R0=1, R0=100 nm, D=5 nm, and 
�=10−5. �b�. Phase dia-
grams enclosing three regions with topologically different shapes:
thick black lines �B=20 T� and gray thin lines �B=0 T same as
Fig. 2�b��. Shapes with different topologies illustrate schematically
the regions of the lowest free energy.
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shapes would depend on the kinetics of the system and that
under certain conditions all three shapes could exist simulta-
neously. In Fig. 4�b� we illustrate the phase behavior of the
studied shapes at B=20 T compared to the one at B=0 T in
Fig. 2�b�. As we expected, in presence of a magnetic field,
the area in the phase diagram of deformed double bubbles
and single spheroids increases significantly, which leads to a
larger probability of finding these shapes for the fluctuating
spherical vesicles. These results also show that the change in
topology from sphere to double bubble can be induced not
only by temperature but also by magnetic fields.

In conclusion, we found that the double bubble, the sur-
face of smallest area enclosing two equal volumes, also
minimizes under certain conditions the free energy of self-

assembled elastic vesicles. We have explicitly shown that
magnetic fields can be used to alter not only the shape and
the size but also the topology of two diamagnetic vesicles.
Considering the possibility of other topologies is useful
when analyzing experimental results and establishing
whether self-assemblies are in equilibrium or not. The calcu-
lations presented in this Rapid Communication may be
thought as a first step to consider the formation of foam
during self-assembly, such as the one observed in �21�. We
hope that our work will provide a motivation for new experi-
ments.
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